ДНЕВНИК

КАЗАНСКОЙ
МЕДИЦИНСКОЙ ШКОЛЫ

ВЫПУСК

№1 (XXIII)

Казань, 2019
Гормональные механизмы регуляции процессов развития и адаптации подростков

Реферат: Актуальность исследования определяется незрелостью гипофизарно-гипофизарной системы у детей, ее физиологической функцией в подростковом возрасте, что при физическом и умственном переутомлении увеличивает риск перегрузки эндокринные процессы в эндокринные и нервно-сосудистые дисфункции. Статья посвящена исследованию роли симпато-адреналовой системы и коры надпочечников в регуляции процессов возрастного развития, полового созревания и адаптации подростков к учебной деятельности. Изучены показатели соматической экскреции адреналина, кортизона, 17-кетостероидов и 17-оксокортикостероидов у мальчиков 11-15 лет на основе осноания флюориметрического и камерететического методов. Установлен определенный синдром в проявлении функциональной активности медиаторного звена симпато-адреналовой системы, глюкокортикоксидной и андрогенной функции коры надпочечников с возрастом и в процессе пубертатных преобразований, при этом отмечена разнонаправленная динамика изучаемых параметров у мальчиков от 14 к 15 годам и к VIII стадии полового созревания. На протяжении учебного года наблюдали достоверное снижение экскреции гормонов и гормональных метаболитов, имеющих различную направленность и интенсивность в возрастных группах - у подростков 14 и 15 лет в конце учебного года выявило достоверное снижение возрастных показателей экскреции кортизона и метаболитов андрогенов (15 лет), нане существенного и длительного увеличения глюкокортикоксидов (февраль, апреля), опасных своим катаболическим действием на организм и уменьшающим влиянием на реакции иммунитета.

Ключевые слова: мальчики 11-15 лет; катехоламины; кортикостероиды; стадии полового созревания; периоды учебного года.

Kazan (Vologrregion) Federal University, 18, Kremlyovskaya Street, Kazan, 420008.

Hormonal mechanisms of regulation of development and adaptation processes of adolescents

Abstract: The relevance of the study is determined by the immaturity of the pituitary-adrenal system in children, its physiological hyperfunction in adolescence, which, with physical and mental fatigue, increases the risk of transition of evolutionary processes into endocrine and neurovascular dysfunctions. The article is devoted to the study of the role of the sympathetic-adrenal system and the adrenal cortex in the regulation of the processes of age development, puberty and adaptation of adolescents to learning activities. Indicators of daily excretion of adrenaline, noradrenaline, 17-ketosteroids and 17-oxy corticosteroids were studied in boys aged 11-15 years based on fluorimetric and colorimetric methods. A certain synchronism of functional activity manifestation of the mediator sympathetic-adrenal system level, glucocorticoid and androgen adrenal cortex function is determined as boys grow older and during their pubertal changes. At the same time the different studied indicators’ dynamics of boys from 14 to 15 years and by the V puberty stage is marked. During the academic year hormone and hormonal metabolite excretion changes, having a different focus and intensity in the age groups were observed: a significant decrease of age noradrenaline excretion and androgen metabolite indicators (at 15) of 14 and 15 year-old teenagers at the end of the academic year is found out, against the backdrop of a substantial and long-term increase of glucocorticoids (February, April), with their dangerous catabolic effect on a body and their depressing effect on the immune response.

Key words: 11-15 year-old boys; catecholamines; corticosteroids; puberty stage; academic year periods.
Актуальность проблемы.
Познание закономерностей функционирования детского организма невозможно без учета роли эндокринных желез, выполняющих совместно с центральной нервной системой функцию регуляторов жизненных процессов и адаптации детей к условиям существования [2]. Согласно принципу гетеропронности развития функциональных систем на каждом этапе онтогенеза происходит созревание имен но тех нейрогормональных механизмов, которые необходимы для обеспечения жизненных функций и оптимального приспособления организма к условиям существования, свойственным данному возрасту [15]. Исключительную роль в адаптации играют, активно взаимодействующие на разных уровнях нервные и гормональные механизмы симпато-адреналовой системы (САС) и гипофизарно-надпочечниковой системы [12]. САС, ее симпатическая часть представляет собой нервное регуляторное звено, необходимое для запуска гуморального механизма приспособительных эндокринных реакций. Гипофизарно-надпочечниковая система занимает ключевое положение в механизме перехода срочных адаптаций в полноценное развитие долговременной адаптации, предупреждая избыточные тканевые реакции на стресс [7]. Особое значение в развитии организма имеет подростковый период с включением сложных механизмов полового созревания, сопровождающихся физиологической гипертрофиеи гипоталамической области мозга и гипофиза [8]. Усиление продукции адреналина (А), норадреналина (НА) и их предшественников, увеличение образований глукокортикоидов вызывает мощный поток симпатических импульсаций в различные органы и системы, повышая напряжение и уязвимость детского организма при воздействии внешних неблагоприятных факторов: физического и умственного переутомления, гиподинами и эмоционального стресса. Увеличивается риск перехода физиологической эндокринной перестройки в эндокринное, а также нервно-сосудистые дисфункции подросткового возраста [3]. Несмотря на имеющиеся литературные данные, посвященные изучению возрастно-половых особенностей функционального созревания САС и коры надпочечников (НК) у детей и подростков, они весьма противоречивы [11,16], в основном получены на больших детях [10] и не отражают характера взаимоотношений регуляторных систем в процессе возрастного развития, полового созревания и учебной деятельности современных школьников.

Цель исследования.
Исходя из вышеизложенного была сформулирована цель исследования, направлена на изучение состояния САС и НК, соотношения их функциональной активности у мальчиков 11-15 лет в процессе возрастного развития, полового созревания и адаптации к учебной деятельности.

Материалы и методы.
В исследовании участвовали мальчики 11-15-летнего возраста, обучающиеся в средней общеобразовательной школе № 1 и №143 г. Казани. Всего было отобрано 64 мальчика, наблюдение за которыми вели в течение 5 лет непрерывно — с 11 до 15-летнего возраста включительно.

О состоянии САС судили по содержанию А и НА в суточной моче на основании флуметретрического метода [5]. Измерение флюреценции осуществляли на приборе БИАН-130 (М-800). Использовались стандарты КА фирмы Sigma. Расчет проводился с учетом диуреза, экскреция выражалась в мкг/сут.

Состояние НК оценивали по содержанию в моче 17-оксикортико стероидов (17-ОКС), являющихся основными метаболитами кортизола, кортизона и их производных, а также по содержанию 17-гидроксикортистероидов (17-ГКС), 2/3 которых синтезируются из андрогенов икрено лювой коры, а 1/3 — из андрогенов гонад [3]. Для количественного определения 17-ГКС использовали колориметрический метод Н.В. Салосудовой и Ж.К. Басса на основе реакции W. Zimmermann в модификации М.А. Креховой [4]. Оптическую плотность раствора измеряли на фотоэлектроколориметре ЭФК-56ПМ при длине волны 500-560 нм, в нюхательной зоне, 0,5 см. Определение 17-ОКС проводили по методу R.N. Silber, C.C. Porter на основании реакции с фенилгидразином после ферментативного гидролиза [4]. Оптическую плотность раствора из-
мерили на спектрофотометре СФ-16 при длине волны 410 нм в кюветах толщиной 10 мм. Экскреция выра- жалась в микмоль/сут.

Сбор суточной мочи проводили три раза в течение учебного года — в октябре, феврале, апреле. С целью исключения влияния сезонных ритмов функциональной активности гипофизарно-надпочечниковой и симпато-адреналовой систем, восточные и пубертатные изменения оценивали по данным октября.

Стадии полового созревания (СПС) определяли по методу Дж. Таннера (1968) в зависимости от степени выраженности вторичных половых признаков [9].

Результаты и обсуждение
Сравнительный анализ возрастной динамики САС и КН выявил определенный синхронизм в проявлении их функциональной ак- тивности [рис.1]. Так, достоверный прирост экскреции НА у мальчиков от 13 к 14 годам, составляющий 5,38 микмоль/сут (р<0,05) сопровождается не менее существенным увеличением суточной экскреции 17-ОКС - 1,59 микмоль/сут (р<0,05) и, напротив, от 12 к 13 годам данные показатели одновременно снижаются (разли- чия достоверны в отношении НА, при р<0,05). Вместе с тем, выявля- ются и разнонаправленные изме- нения изучаемых параметров: на- блудаемое уменьшение экскреции НА у мальчиков от 14 к 15 годам не согласуется с резким возрастанием активности андрогенов и глюко- кортикоидов: на фоне постепенного и линейного увеличения 17-КС с возрастом отмеча- ется тенденция к снижению 17-ОКС от 11 к 13 годам. Вероятно, это от- ражает биологический агонизм андрогенов и глюкокортикоидов, обладающих беталов-анаболиче- ским и катаболическим влиянием на органы [14,15], и свидетель- ствует о возрастании роли андро- генов КН в регуляции роста и полового созревания мальчиков [2]. Обращает на себя внимание отсутствие существенных измене- ний в экскреции А по сравнению с НА (отмечается лишь некоторое ее увеличение у подростков 14 лет, со- ставляющее 0,97 микмоль/сут), что согла- суется с представлениями о более раннем созревании хромаффинной ткани относительно симпатической иннервации в онтогенезе [6] и пол- ной ее сформированности у детей к 9-10 годам [8].

Учитывая, что развитие нейроэндокринной системы в подрост- ковом возрасте определяется пре- имущественно уровнем половой зрелости, изучение функциональ- ного состояния САС и КН проводи- лось на каждой стадии полового созревания (СПС) [рис.2]. Так, от II к III стадии наблюдают однонаправленные и положительные сдвиги изучаемых показателей: выделение А и НА у мальчиков увеличивается на 4,77 микмоль/сут (р<0,05) и 3,05 микмоль/сут, наблюдается достоверный прир- рост экскреции 17-КС. Это может свидетельствовать о наличии функциональной взаимосвязи между САС и КН, их взаимоисключающем биологическом действии на стадии активации гонад. К IV СПС, характери- зующемся интенсивным фор- мированием как коры надпочеч- ников, так и половых желез [2,8], наблюдается существенное возрастание 17-КС и 17-ОКС, по сравнению с III стадией, составляющее 7,03 микмоль/сут (р<0,05) и 1,74 микмоль/сут (р<0,05), что сочетается с еще большим увеличением экскреции НА — 9,41 микмоль/сут (р<0,05), обе- спечивающего, вероятно, наряду с другими медиаторами централь- ной нервной системы гуморальную передачу нервных влияний на уровень гипоталамуса и, как следствие, активацию КН [7]. На V СПС дина- мика изучаемых показателей раз- нонаправлена: суточная экскреция НА снижается по сравнению с IV ста- дией на 11,31 микмоль/сут (р<0,05) при стабильном уровне А, а выделение 17-КС и 17-ОКС продолжает суще- ственно увеличиваться на 8,58 и 2,44 микмоль/сут (р<0,05) соответственно. Это указывает на незавершен- ность пубертатного формирования КН среди исследуемого возрастного контингента детей, а также согласу- ется с данными литературы о более поздних пубертатных изменениях в регуляции гипофизарно-надпо- чечниковый системы, когда дефини- тивный уровень концентрации кор- тизола и дегидроэпиандростерона устанавливается лишь к 21 году [8].

Далее был проведен анализ функционального состояния САС и КН на протяжении учебного года, в
Рис. 2.
Изменение экскретции катехоламинов, метаболитов андрогенов и глукокортикоидов у мальчиков на разных стадиях полового созревания, М±m

Примечание: * - различия достоверны при р<0,05 по сравнению с предыдущей стадией полового созревания

В ходе которого достаточно сложно было учесть долю влияния внутренних и внешних средовых факторов на детский организм — возрастных тенденций, уменьшенной и физической нагрузок, сезонных колебаний активности нейроэндокринной регуляции, которые взаимосвязаны и взаимообусловливают друг друга. Было установлено, что экскреция изучаемых гормонов и гормональных метаболитов изменяется в течение учебного года, соотношение их функциональной активности различно в возрастных группах [таблица]. При этом до 14-летнего возраста выделение НА на протяжении учебного года отличается относительной стабильностью (при постоянных значениях А), с некоторой тенденцией к возрастанию от октября до апреля в 11 и 13 лет, в отличие от 17-ОКС, уровень которых у мальчиков 12 лет к концу учебного года существенно увеличивается — на 1,82 мкмоль/сут (p<0,05).

Возрастные тенденции становления андрогенной функции КН и активизации половых желез наиболее ярко выражены у школьников в 14 лет, когда наблюдается прирост экскреции 17-КС в апреле по сравнению с октябрем, составляющий 5,89 мкмоль/сут (p<0,05). Обращает на себя внимание волнообразный характер динамики экскреции метаболитов андрогенов в течение учебного года у мальчиков 12, 13 и 14 лет с уменьшением ее интенсивности в зимний и более существенным возрастанием в весенний период (p<0,05), что, возможно, объясняется сезонными колебаниями функциональной активности надпочечников и половых желез и согласуется с представлениями о нейроэндокринных сезонных ритмах [1]. Особого внимания заслуживают мальчики 14 и 15 лет, у которых на фоне возрастного увеличения экскреции НА от 13 к 14 годам [рис. 1] наблюдается достоверное снижение ее к концу учебного года по сравнению с началом на 6,09 (p<0,05) и 5,58 мкмоль/сут (p<0,05) в том и другом возрасте соответственно, что, с одной стороны, может свидетельствовать о повышении активности нервного звена САС в период пубертата, а с другой — о низкой экономичности его функционирования в процессе учебной деятельности подростков. При этом динамика глукокортикоидной функции КН имеет противоположный характер: экскреция 17-ОКС, составляющая в начале учебного года у мальчиков 14 и 15 лет 7,59±0,55 и 9,47±0,60 мкмоль/сут, к концу его увеличивается (p<0,05), превосходя в 1,8 и 1,5 раза свою возрастную планку.

Это может указывать на длительное и существенное нарушение в гипофизарно-надпочечниковой системе, которое, как известно, сопровождается реким увеличением содержания кортизола в крови и моче [12]. Несмотря на то, что увеличение глукокортикоидов — это основная адаптивная реакция организма, повышенный уровень кортизола опасен своим катаболическим влиянием на детский организм, усугубляющимся на фоне лихорадочных реакции иммунитета [2,12]. Более того, высокая концентрация кортизола может вызвать угнетение биосинтеза половых гормонов [3], поэтому не исключено, что именно резкое возрастание экскреции 17-ОКС, наблюдаемое нами у мальчиков 15 лет приводит к достоверному снижению у них уровня андрогенов, содержание которых в суточной моче составляет в конце учебного года 28,19±1,48 мкмоль/сут, что на 9,85 мкмоль/сут меньше, чем в октябре, то есть в 1,3 раза ниже возрастных показателей школьников. Это является крайне неблагоприятным фактом, способным повлиять на перспективу полового созревания подростков. Таким образом, 14 и 15-летний возраст у мальчиков может быть выделен в качестве критического периода их развития, характеризующегося существенным напряжением механизмов адаптации при снижении андрогенной функции КН и половых желез в процессе учебной деятельности.

Выводы
1. Возрастная динамика становления САС и КН у мальчиков 11-15 лет характеризуется разнонаправленными изменениями экскреции катехоламинов и кортикостероидов: на фоне постепенного увеличения 17-КС с возрастом отмечается тенденция к снижению 17-ОКС в 11,12 и 13 лет; уменьшение экскреции НА в 14 и 15 лет сопровождается возрастанием активности андрогенной и глукокортикоидной функции КН.
2. В процессе полового созревания мальчиков определяется синхронность в проявлении функциональной активности регуляторных систем: на III и IV СПС наблюдается одновременный прирост экскреции А, НА, 17-КС и 17-ОКС. Отмечаются незавершенность пубертатного
<table>
<thead>
<tr>
<th>Показатели</th>
<th>Возраст (лет)</th>
<th>Октябрь 1</th>
<th>Февраль 2</th>
<th>Апрель 3</th>
<th>P 1-2</th>
<th>P 2-3</th>
<th>P 3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ядреналин, мг/сут</td>
<td>11</td>
<td>7,35±0,45</td>
<td>7,81±0,91</td>
<td>7,61±0,72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7,38±0,25</td>
<td>7,62±0,43</td>
<td>7,91±0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6,74±0,55</td>
<td>6,35±0,47</td>
<td>6,82±0,60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>7,85±0,65</td>
<td>7,94±0,70</td>
<td>8,36±0,87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>7,61±0,55</td>
<td>6,21±0,37</td>
<td>6,72±0,48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Норадреналин, мг/сут</td>
<td>11</td>
<td>20,58±1,85</td>
<td>19,13±1,71</td>
<td>21,10±1,84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>21,97±1,79</td>
<td>21,30±1,69</td>
<td>21,47±1,50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>18,04±1,25</td>
<td>18,90±1,16</td>
<td>20,30±1,91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>23,42±2,01</td>
<td>21,81±1,73</td>
<td>18,33±1,41</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>22,82±1,85</td>
<td>21,13±1,08</td>
<td>17,84±1,04</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-طقسي, ммоль/сут</td>
<td>11</td>
<td>18,67±2,62</td>
<td>17,80±1,18</td>
<td>16,94±1,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>20,42±2,22</td>
<td>18,43±1,71</td>
<td>25,12±2,82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>25,79±1,76</td>
<td>21,85±1,38</td>
<td>28,20±1,73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>29,19±1,45</td>
<td>24,81±2,23</td>
<td>35,08±3,61</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>38,04±2,94</td>
<td>39,09±2,72</td>
<td>28,19±1,48</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>17-ГИС, ммоль/сут</td>
<td>11</td>
<td>6,67±0,29</td>
<td>6,14±0,64</td>
<td>6,12±0,50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6,47±0,70</td>
<td>6,77±0,61</td>
<td>8,29±0,77</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6,08±0,62</td>
<td>6,25±0,53</td>
<td>5,02±0,36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>7,59±0,55</td>
<td>10,16±0,68</td>
<td>13,89±0,67</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>9,47±0,60</td>
<td>10,30±0,90</td>
<td>15,02±0,89</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Примечание: * - различия достоверны при р<0,05

формирования КН, что подтверждается прогрессирующим ростом метаболитов глукокортикостероидов и андрогенов вплоть до В СПС на фоне стабилизации НА.

3. На протяжении учебного года функциональная активность САС и КН разнонаправлена, что наиболее ярко проявляется у мальчиков 14 и 15 лет, у которых на фоне возрастного увеличения НА наблюдается его снижение к концу учебного года в сочетании с повышением экскреции 17-ОКС, в 1,8 и 1,5 раза превосходящей свою возрастную планку.

Литература
1. Головин А.П. Сезонные биоритмы в физиологии и патологии / Головин А.П., Головин П.П. — М: Медицина, 1975.