Деформирование грунтов в зоне элементов конструкций транспортных сооружений
А.В. Карамов, Л.Р. Секаева
Казанский (Приволжский) федеральный университет
E-mail lsekaeva@ksu.ru

Введение.

В работе излагается методика оценки несущей способности водонасыщенной пористой среды. Для этого на основе конечно-элементного анализа реализуется теория предельного состояния Мора-Кулона, использующая эффективные напряжения в скеле грунта.

В рамках модели идеально-пластической среды строится итерационная процедура решения физически нелинейной задачи типа метода начальных напряжений. В результате удается определить области (зоны) достижения грунтами предельного состояния и уровень пластических деформаций, приобретенных грунтом.

Для глинистых и песчаных массивов распространение получили условия прочности Мора-Кулона в виде ограничений на значения напряжений в виде

\[\tau \leq c + \sigma_n \tan \phi, \]

где \(c \) — коэффициент сцепления, \(\phi \) — угол внутреннего трения, \(\tau \) и \(\sigma_n \) — касательные и нормальные напряжения на площадках скольжения; и условия Мизеса-Боткина путем задания предельной поверхности в виде

\[\tau_i = c^* + \sigma_0 \tan \varphi^*, \]

где \(\tau_i = \sigma_i / \sqrt{3} \) — интенсивность касательных напряжений, \(\sigma_0 \) — среднее напряжение, \(\varphi^* \) — угол трения на оскладнической площадке, \(c^* \) — предельное сопротивление чистому сдвигу.

Наибольшее распространение при решении физически нелинейных задач МКЭ получила итерационная процедура, известная как "метод начальных напряжений". В соответствии с ней на каждом шаге итерации формируется линейная задача и найденные напряжения оцениваются по соотношениям предельного состояния. Если материал не достиг его, то считается, что напряженное состояние найдено. Если материал вышел в предельное состояние, то определяются "истинные" напряжения и "дополнительные", которые в совокупности равны найденным, из решения линейной задачи. Далее считается, что "дополнительные" напряжения являются неуравновешенными внутренними усилиями, и на следующем шаге итерации они принимаются как внешние силы.

Формально система разрешающих уравнений на шаге итерации получается из принципа возможных перемещений, который, как известно, определяет систему уравнений Эйлера экстремальной задачи минимизации полной энергии деформации системы при наличии дополнительных внутренних усилий. Это вариационное уравнение имеет вид

\[\iint \{ \sigma^{(k+1)} \} \{ \delta \epsilon \} dV = \iint \{ \{ P \}^T \{ \delta V \} + \{ \sigma^{(k)}_H \}^T \{ \delta \epsilon \} \} dV + \int \{ \{ P_S \}^T \{ \delta u \} \} dS, \]