DIFFERENCES OF IDEMPOTENTS IN C^*-ALGEBRAS

A. M. Bikchentaev

Abstract: Suppose that P and Q are idempotents on a Hilbert space \mathcal{H}, while $Q = Q^*$ and I is the identity operator in \mathcal{H}. If $U = P - Q$ is an isometry then $U = U^*$ is unitary and $Q = I - P$. We establish a double inequality for the infimum and the supremum of P and Q in \mathcal{H} and $P - Q$. Applications of this inequality are obtained to the characterization of a trace and ideal F-pseudonorms on a W^*-algebra. Let φ be a trace on the unital C^*-algebra \mathcal{A} and let tripotents P and Q belong to \mathcal{A}. If $P - Q$ belongs to the domain of definition of φ then $\varphi(P - Q)$ is a real number. The commutativity of some operators is established.

DOI: 10.1134/S003744661702001X

Keywords: Hilbert space, linear operator, idempotent, tripotent, projection, unitary operator, trace class operator, operator inequality, commutativity, W^*-algebra, C^*-algebra, trace, ideal F-norm

Introduction

Let P and Q be idempotents on a Hilbert space \mathcal{H}. Various properties (invertibility, Fredholm property, nuclearity, positivity, etc.) of the difference $P - Q$ were studied in [1–6]. Each tripotent ($A = A^3$) is the difference $P - Q$ of some idempotents P and Q with $PQ = QP = 0$ [7, Proposition 1]. Therefore, tripotents inherit some properties of idempotents [8].

In this article, we obtain some new results on $P - Q$. We prove that the isometry of $U = P - Q$, where $Q^* = Q$, implies the unitarity of U and the equality $Q = I - P$ (Theorem 1). We give an example showing the substantiality of the condition $Q^* = Q$. If $P^* = P$ then $P \wedge Q + P^\perp \wedge Q \leq |P - Q| \leq P \vee Q - P \wedge Q$ with equality in the second inequality if and only if $PQ = QP$ (Theorem 2 and Proposition 1). Using this operator inequality, we establish a new inequality that characterizes traces on a W^*-algebra \mathcal{A} (Corollary 4). Applications are obtained to ideal F-pseudonorms on \mathcal{A} (Corollary 7).

Let φ be a trace on a unital C^*-algebra \mathcal{A}, let \mathfrak{A}_φ be the domain of definition of φ, and let P and Q belong to \mathcal{A}. If $P - Q \in \mathfrak{A}_\varphi$ then $\varphi(P - Q) \in \mathbb{R}$ (Theorem 3). Theorem 3 is a C^*-analog of the following familiar assertion [6]: If P and Q are idempotents in \mathcal{H} and $P - Q$ belongs to the ideal \mathfrak{S}_1 of trace class operators then the canonical trace $\text{tr}(P - Q)$ belongs to \mathbb{Z}. Let \mathcal{A} be a C^*-algebra and let (\mathcal{E}, \preceq) be a partially ordered set. We establish a monotonicity criterion for a mapping from \mathcal{A}^+ into \mathcal{E} (Proposition 2).

1. **Definitions and Notations**

By a C^*-algebra we mean a complex Banach $*$-algebra \mathcal{A} such that $\|A^*A\| = \|A\|^2$ for all $A \in \mathcal{A}$. Given a C^*-algebra \mathcal{A}, denote by \mathcal{A}^id, \mathcal{A}^sa, and $\mathcal{A}^\text{+}$ the sets of its idempotents, Hermitian elements, and positive elements respectively. If $A \in \mathcal{A}$ then $|A| = \sqrt{A^*A} \in \mathcal{A}^\text{+}$. If $A \in \mathcal{A}^\text{sa}$ then $A_+ = (|A| + A)/2$ and $A_- = (|A| - A)/2$ lie in $\mathcal{A}^\text{+}$ and $A = A_+ - A_-$, $A_+ A_- = 0$. A W^*-algebra is a C^*-algebra \mathcal{A} having a predual Banach space $\mathcal{A}_\text{sa} : \mathcal{A} \simeq (\mathcal{A}_\text{sa})^*$. For a W^*-algebra \mathcal{A}, denote by \mathcal{A}^sa and \mathcal{A}^sa its subsets of unitary elements and the projection lattice respectively. If I is the unity of \mathcal{A} and $P \in \mathcal{A}^\text{id}$ then $P^\perp = I - P \in \mathcal{A}^\text{id}$.

The author was supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan (Grant 15–41–02433).