Spin and Charge Tunneling Transport in Magnetic Tunnel Junctions With Embedded Nanoparticles

Artur Useinov*, Chih-Huang Lai†, Niazbeck Kh. Useinov‡, Lenar R. Tagirov‡,§,¶

*National Chiao Tung University, Hsinchu, Taiwan, †National Tsing Hua University, Hsinchu, Taiwan, 
‡Kazan Federal University, Kazan, Russia, §E. K. Zavoisky Physical-Technical Institute of RAS, 
Kazan, Russia, ¶Institute for Advanced Studies of ASRT, Kazan, Russia

11.1 Introduction

Various multilayer systems such as magnetic tunnel junctions (MTJs) and their modifications attract attention due to their promising applications: magnetic field sensors, magnetic memory, memristors, nano spin-valves, and resistance generators. The current progress in studying giant magnetoresistance (GMR), tunnel magnetoresistance (TMR), and spin-transfer torque (STT) can provide successful solutions of the problems related to energy consumption and thermal stability factor of magnetic random access memory (MRAM, STT MRAM). Moreover, spintronic devices have a unique advantage against semiconductor devices that they are nonvolatile. In addition, they are expected to be more scalable than semiconductor-based devices, because magnetic nano-domain is much more stable groundwork for the information storage in contrast to a charged micro-capacitor. It is well-known that the leakage current rapidly increases with a capacitor dimension reduced down to the nano-scale.

In this review we show how quasiclassical theory for point-like contacts can be adapted for spintronic device physics explaining mean free path and GMR effects in nano-scale heterocontacts, asymmetric voltage dependences of TMR in MTJs, as well as applied to modeling of zero bias TMR anomalies in MTJs with embedded nanoparticles (NPs). The dependence of in-plane component of STT on the applied voltage for various size of NPs in the case of the different barrier asymmetry can be also calculated.

GMR is a change in electric resistance of a magnetically inhomogeneous material when an applied magnetic field modifies magnetic configurations in the system. The magnetically inhomogeneous system usually consists of a magnetic multilayer in which the layers are