Moscow International Symposium on Magnetism

1 – 5 July 2017

Book of Abstracts

M.V. Lomonosov Moscow State University, Faculty of Physics

Main Topics

Spintronics and Magnetotransport
Magnetophotonics
High Frequency Properties and Metamaterials
Magnetic Nanostructures and Low Dimensional Magnetism
Soft and Hard Magnetic Materials
Magnetic Shape-memory Alloys and Magnetocaloric Effect
Magnetic Semiconductors and Oxides
Multiferroics
Magnetism and Superconductivity
Magnetic Soft Matter
Magnetism in Biology and Medicine
Study of Magnetism using X-rays and Neutrons
Theory
Scientific equipment
Topological Insulators
Skyrmions
Magnonics
Magnetophotonics and Ultrafast Magnetism
MRAM

Editors: N. Perov
V. Bessalova
A. Kharlamova
L. Makarova
Yu. Alekhina
T. Rusakova

Moscow 2017
Moscow International Symposium on Magnetism
(MISM)
1 – 5 July 2017, Moscow
Book of Abstracts

The text of abstracts is printed from original contributions.

Faculty of Physics M.V. Lomonosov MSU
Физический факультет МГУ имени М.В. Ломоносова

Contributors to MISM 2017
Moscow International Symposium on Magnetism expresses its warmest appreciation on the following organizations for their generous support:

- Lomonosov Moscow State University
- Russian Foundation for Basic Research
- Faculty of Physics

© MISM – 2017
ULTRA-THIN Pd_{1-x}Fe_x FILMS SYNTHESIS AND STUDIES OF THEIR COMPOSITION, MORPHOLOGY, STRUCTURAL AND MAGNETIC PROPERTIES

Esmeechi A., Vakhitov LR, Nikitin N.P., Yumilkin I.V., Gunarov A.I., Gabbasov B.F.
Rogov A.M., Alevs N.N., Yusupov R.V., Tagirov L.R.

1 Institute of Physics, Kazan Federal University, Kazan, Russia
2 Baku State University, Baku, Azerbaijan
3 Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia
4 Interdisciplinary Center for Analytical Microscopy, Kazan Federal University, Kazan, Russia
iskvakhitov@gmail.com

Palladium iron (PdFe) alloy is the unique class of ferromagnetic materials. A small, even less than 1 at.% amount of Fe atoms in palladium matrix induces ferromagnetism (FM) [1]. Iron atoms substituting for palladium in the crystal lattice create strong polarization and produce overlapping polaron clouds of 4d-electrons. Concentration of iron controls principal ferromagnetic properties of these materials. Thin films of Pd_{1-x}Fe_x are attractive for practical applications in cryogenic memory elements.

Ultradamp Pd_{1-x}Fe_x (x=0.01-0.1) films were deposited by molecular beam epitaxy (MBE, SPECS) and magnetron sputtering (MS, BESTEC) techniques under ultra-high vacuum conditions (3 \times 10^{-10} mbar in the MBE chamber, and 5 \times 10^{-9} mbar of the residual gas pressure in the MS chamber). Magnesium oxide (MgO) and silicon single crystals were used as the substrates for MBE and MS depositions, respectively.

SPECS Er-LEED-3000-D setup was used for investigating crystal structures of the substrates and the films. Surface morphology was studied by scanning electron microscopy (SEM, Carl Zeiss Merlin) and atomic force (AFM, Bruker Dention FastScan) microscopies. Elemental composition and atomic concentration of the films were measured by X-Ray photoelectron spectroscopy (XPS, SPECS). Thickness of the deposited films was controlled with the stylus profilometer Dektak XT (Bruker). Magnetic properties were studied by means of the vibrating sample magnetometry technique with Quantum Design PPMS-9. An X-band Bruker ESP300 electron spin resonance spectrometer (ESR) was used for ferromagnetic resonance (FMR) measurements.

Cubic magnetic anisotropy with tetragonal distortion was found for the films with iron concentrations of x>0.015, that were epitaxially grown by MBE. In contrast, films deposited by MS revealed isotropic in-plane magnetic properties. It was found that the magnetization and Curie temperature of the films were growing monotonically while increasing the iron concentration. Coercive fields for the films deposited by MBE were several times smaller compared to the films obtained by MS technique. Magnetic measurements at low temperatures (T = 5 K) show coercive field of about 7 Oe for the epitaxial films of Pd_{1-x}Fe_x with x=0.01-0.08.

The Program of Competitive Growth of Kazan Federal University supported by the Russian Government is gratefully acknowledged, as well as partial support from RFBR project No 14-02-00793_A. Synthesis and analysis of the films were carried out at the PCR Federal Center of Shared Facilities of KFU. The SEM and AFM measurements were performed at Interdisciplinary Center for Analytical Microscopy of KFU.