European Journal of Clinical Investigation

52nd Annual Scientific Meeting of the European Society for Clinical Investigation

Barcelona, Spain
30th May – 1st June 2018

ABSTRACT BOOK
Abstracts of the 52nd Annual Scientific Meeting of the
European Society for Clinical Investigation
"Precision medicine for healthy ageing"
Barcelona, Spain
30th May – 1st June 2018

Guest Editor:
Prof. Lina Badimon
Prof. Gema Frühbeck

These abstracts have been published as they were received via online electronic submission. Every effort has been made to reproduce faithfully the abstracts as submitted. However, no responsibility is assumed by the organizers for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of methods, products, instructions or ideas contained in the materials herein. Because of the rapid advances in medical sciences, we recommend that independent verification of diagnoses and drug doses should be made.
Contents

Abstract number

PL | Plenary speakers

Workshop invited speakers

W1 | Phagocyte biology
W2 | Mitochondria, ageing and disease
W2/W4 | Mitochondria, ageing and disease & Hepato-Gastroenterology/Lipids
W3 | Cardiology-CIBERCV
W4/W7 | Hepato-Gastroenterology/Lipids & Obesity-CIBEROB
W5/W7 | Omics & Obesity-CIBEROB
W6 | Precision nutrition
W7 | Obesity-CIBEROB

Oral presentations

W1 | Phagocyte biology
W2 | Mitochondria, ageing and disease
W3 | Cardiology-CIBERCV
W4/W7 | Hepato-Gastroenterology/Lipids & Obesity-CIBEROB
W7 | Obesity-CIBEROB

Posters by theme

W1 | Phagocyte biology
W1 | Phagocyte biology
W2 | Mitochondria, ageing and disease
W2 | Mitochondria, ageing and disease
W2 | Mitochondria, ageing and disease
W3 | Cardiology-CIBERCV
W3 | Cardiology-CIBERCV
W3 | Cardiology-CIBERCV
W4 | Hepato-Gastroenterology/Lipids
W5 | Omics
W6 | Precision nutrition
W7 | Obesity-CIBEROB
W7 | Obesity-CIBEROB
W9 | Miscellaneous Medical Topics

Posters by session

W1 | Phagocyte biology
W2 | Mitochondria, ageing and disease
W3 | Cardiology-CIBERCV
W7 | Obesity-CIBEROB
W1 | Phagocyte biology
W2 | Mitochondria, ageing and disease
W3 | Cardiology-CIBERCV
W5 | Omics
W2 | Mitochondria, ageing and disease
W3 | Cardiology-CIBERCV
W4 | Hepato-Gastroenterology/Lipids
W6 | Precision nutrition
W7 | Obesity-CIBEROB
W9 | Miscellaneous Medical Topics

Poster session 1 Thursday, 31 May, 12:30-14:30
Poster session 2 Thursday, 31 May, 17:30-19:00
Poster session 3 Friday, 1 June, 12:30-14:30
eliminates the positive effect caused by Leu(31)Pro(34) NPY in all age groups, which indicates the involvement of this receptor subtype in myocardial contractility. NPY (10^{-6}–10^{-10} M) reduced the force of myocardial contraction in 7-day-old animals and does not cause significant change in the parameters of isometric myocardial contraction in 100-day-old rats. NPY in the presence of selective blocker of Y5R, CGP 71683 (1.4 mM), reduced the force of myocardial contraction in 7-day-old animals and did not affect in 100-day-old animals, which indicates the involvement of this receptor subtype in myocardial contractility only in newborn animals.

Work supported by Program of Competitive Growth of KFU and Russian Foundation for Basic Research (grant No. 17-04-00071).

P127-T | Involvement of α-adrenoreceptors of rats myocardial contractility dopaminergic regulation during postnatal ontogenesis

T. Zefirov; G.A. Bilalova; F.G. Sitidikov; N.B. Dikopolskaya; M.V. Shakhelislamova

Kazan (volga Region) Federal University, Kazan, Russian Federation;
yaroslavl State Medical University, yaroslavl, Russian Federation;
Kazan State Medical University, Kazan, Russian Federation

The regulatory effect of dopamine, especially in ontogenesis, on myocardial contractility has been given little attention. The function of dopamine is initiated through the activation of dopamine receptors found in the heart of the rat and human. Dopamine also interacts with α- and β-adrenergic receptors. The purpose of this study is to study the effect of different dopamine concentrations on myocardium contractility in 42-, 56- and 100-day-old rats with blocked α-adrenergic receptors.

Registration of isometric contraction of atrial and ventricular myocardial striae of 42-, 56- and 100-day-old rats was carried out on a PowerLab device with MLT 050/D force sensor (ADInstruments). We determined the reaction contraction force of the atrium and ventricle myocardium at dopamine range of 10^{-5}–10^{-9} M. 10^{-6} M concentration of phentolamine was used for the blockade of α-adrenergic.

Dopamine blockade by phentolamine increased the force of atrial contractions by 8% (10^{-6} M) and in the ventricles by 15% (10^{-5} M) in 42-day-old rats after. All the other dopamine concentrations lead to a decrease in contractility of strips of myocardium of Atria and ventricles.

Phentolamine induced dopamine blockade increased the force of contraction of the Atria and ventricles by 13–20% (10^{-3}, 10^{-6}, 10^{-9} M) in 56-day-old rats. We observed a 19% reduced contraction force of the atrial and ventricular strips of the myocardium after treatment with 10^{-7} and 10^{-8} M concentrations of dopamine.

100-day-old animals, phentolamine induced dopamine blockade increased the force of atrial contractions in the studied range of concentrations (10^{-5}, 10^{-6}, 10^{-7}, 10^{-9} M) and reduces the force of contraction of strips of
ventricular myocardium. Consequently, dopamine and α-adrenergic receptors are not responsible for the decrease in strength of contractility of the ventricular myocardium. Work supported by Program of Competitive Growth of KFU and Russian Foundation for Basic Research.

P128-T | Endovascular revascularization of occlusion renal artery in a patient with chronic kidney disease

S. Zinchenko*; A. Khalirakhmanov*; A. Sharafeev*; J. Troshina

*Kazan Federal University, Kazan, Russian Federation; Kazan State Medical University, Kazan, Russian Federation

Background: The problem of revascularization of renal arteries in chronic kidney disease remains unsolved. We present the case of endovascular revascularization of renal arteries with positive dynamics and effect.

Materials and methods: Revealing renal arteries stenosis and performed endovascular stenting with the evaluation of the function in 6 months.

Results and discussion: Patient M, 57 years old, entered to the hospital with weakness, dizziness, arterial hypertension. Glomerular filtration rate (GFR) was 28 mL/min/1.73 m² (CKD-EPI). The daily blood pressure was 185/110 mmHg. Complete occlusion of the right renal artery and the proximal segment of the left renal artery to 85% were revealed by Doppler ultrasonography. Angiography of renal arteries with stenting occlusion of the right renal artery was performed. Stent in the left artery was emplaced in 3 months.

In 6 months after these procedures patient reported improvement in his general condition, blood pressure fixed at 140/80 mmHg. We received stabilization of renal function: serum creatinine concentration of the blood dropped to 67-8 mmol/L, GFR increased from baseline ~ 86 mL/min/1.73 m². The average systolic blood pressure fell by 32-1%, diastolic blood pressure decreased by 27-3% from baseline (75 mmHg). According to dynamic nephroscintigraphy, stabilization of renal function was with preservation of the perfusion volume of the right kidney, without significant increase in function, with improvement of left kidney function. The total GFR was 55.5-66 mL/min (left ~ 46-5 mL/min, right ~ 9.06 mL/min).

Conclusion: This case shows that percutaneous endovascular interventions can be effective and safe as a method of revascularization in patients with renal artery occlusions. Work supported by Program of Competitive Growth of KFU.

P035-F | Ventricular or atrial epicardial fat secretome can be regulated by acetylcholine: new preclinical models on autonomic dysfunction

M. Couselo-Seijas*; R.M. Agra*; A.L. Fernández*; J.M. Martinez-Cereijo*; S.B. Bravo*; J.N. López-Canoa*; J.L. Martínez-Sánchez*; J. García-Seara*; J.R. González-Juanatey*; M. Rodríguez-Manero*; S. Eiras*

*Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain; Cardiovascular Area and Coronary Unit, University Clinical Hospital, Santiago de Compostela, Spain; CIBERCV, Madrid, Spain; Heart Surgery Department, University Clinical Hospital, Santiago de Compostela, Spain; Proteomic Unit, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain

Background: Atrial fibrillation (AF) is one of the most sustained arrhythmias. Recent studies suggest that the local amount of epicardial adipose tissue (EAT) around the atria is more associated with AF burden than obesity, ageing or left atria dimensions. Several authors have paid attention on EAT-released proteins as mediators of AF substrate. Besides, EAT shatters ganglionated plexuses and cholinergic and adrenergic nerves. The principal cholinergic neurotransmitter is acetylcholine (ACh), which acts reducing the action potential duration. Some authors select EATv for studying EAT contribution to AF while others suggest the knowledge of the adipose tissue closer to the disorder.

Purpose: We wanted to compare the secretome between peri-atrial EAT (EATa) and peri-ventricular EAT (EATv) and its differential regulation by acetylcholine (ACh).

Material and methods: EATa and EATv from 11 patients undergone open heart surgery were splitted in 100 mg pieces and cultured. After 24 hours washing, tissue proteins were separated by 2-Dimensional electrophoresis. Secretome proteins were separated by SDS-polyacrylamide electrophoresis gel, quantified by an analysis software and identified by mass spectrometry. Muscarinic receptor type’s expression was analyzed by real time polymerase chain reaction or western blot. Then ACh and acetylcholinesterase (AChE) activities were determined by colorimetric assays.

Results: Our results showed high similarities between EATa and EATv regarding to their protein and secretome profiles. Thus, 282 common proteins were identified in both tissues. EATa and EATv contained muscarinic receptor type 3 (mAChR 3), which is increased in adiopogenesis-induced cells. Despite AChE activity was higher in EATa (128 [17-543 mM/mg tissue]) than in EATv (43 [8-142 mM/mg tissue]); P < 0.05, both tissues modified their released protein profile after ACh treatment.

Conclusions: The similarity between the released proteins from EATa and EATv and its regulation by ACh makes them an appropriate preclinical model to clarify the interplay among EAT, AF and autonomic dysfunction.