КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

"УТВЕРЖДАЮ"	
Проректор	_ В.С.Бухмин

ПРОГРАММА ДИСЦИПЛИНЫ Физика конденсированного состояния вещества

Цикл ДС

 $\Gamma C \Theta$ - общие гуманитарные и социально-экономические дисциплины; EH - общие математические и естественнонаучные дисциплины; $O\Pi Д$ - общепрофессиональные дисциплины; ДC - дисциплины специализации; $\Phi T Д$ - факультативы.

Специальность:	<u>010400</u>	_	<u>Физика</u>
	(Номер специальности)		(Название специальности)
_			
Принята на засе	дании кафедры		физики твёрдого тела
			(Название кафедры)
(протокол № <u>7</u> о	т " <u>17</u> " <u>сентября</u> 2009	г.)	
Заведующий ка	федрой		
	(Л.Р. Тагиро	в)	
	· · · · · ·		
Утверждена Уч КГУ	ебно-методической к	омио	ссией <u>физического</u> факультета (Название факультета)
(протокол №	_ от ""2	200_	_ r.)
Препсепатель м			
Председатель ко			
	(Д.А. Таюрс	кии)	

Методические указания (пояснительная записка)

Рабочая программа дисциплины

"Физика конденсированного состояния вещества"

Предназначена для студентов 4 курса,

по специальности: 010400 – Физика

(Номер специальности) (Название специальности)

АВТОРЫ: Ш.Ш. Башкиров, Л.Р. Тагиров

КРАТКАЯ АННОТАЦИЯ:

Лекционный курс является базовой дисциплиной специальности и даёт представление об электронной структуре вещества в конденсированном состоянии и его колебательных свойствах.

1. Требования к уровню подготовки студента, завершившего изучение дисциплины <u>Физика конденсированного состояния вещества</u> (Наименование дисциплины)

Студенты, завершившие изучение данной дисциплины должны:

- знать основы теории физики твёрдого тела;
- хорошо представлять свойства квазичастиц;
- разбираться в свойствах полупроводников, металлов, жидких кристаллов;
- знать особенности объектов с ограниченной размерностью.

2. Объем дисциплины и виды учебной работы (в часах) Форма обучения <u>очная</u>

очная, заочная, вечерняя

Количество семестров 1

Форма контроля: 7 семестр <u>экзамен</u>

зачет, экзамен

№	Drawa varofina ny povogravi	Количество часов		
Π/Π	Виды учебных занятий	7		
		семестр		
1.	Всего часов по дисциплине	84		
2.	Самостоятельная работа	30		
3.	Аудиторных занятий	54		
	в том числе: лекций	54		
	семинарских (или			
	лабораторно-практических)			
	занятий			

Содержание дисциплины

ТРЕБОВАНИЯ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО СТАНДАРТА К ОБЯЗАТЕЛЬНОМУ МИНИМУМУ СОДЕРЖАНИЯ ПРОГРАММЫ

Индекс	Наименование дисциплины и ее основные разделы	Всего часов
ПС	ФИЗИКА КОНДЕНСИРОВАННОГО	93
ДС	СОСТОЯНИЯ ВЕЩЕСТВА	93
	,	
	Азбука кристаллографии (основные идеи,	
	исходные положения и определения), строение	
	конденсированных сред, кристаллическая	
	структура и ее описание, симметрия кристалла,	
	точечные и пространственные (федоровские)	
	группы, дифракция в кристаллах. Межатомные	
	силы и энергия связи, электронные волны в	
	кристалле, энергия Ферми, квазичастицы и	
	электронная теплоемкость. Принципы	
	строения конденсированных систем, ближний	
	и дальний порядок, функция радиального	
	распределения частиц, пространственная	
	когерентность, принципы плотной и валентной	
	упаковок. Упругие свойства кристаллов,	
	тензоры напряжений и деформаций,	
	устойчивость кристаллических решеток.	
	Динамика кристаллической решетки, упругие	
	волны, смещения атомов и фононы,	
	теплоемкость, ангармонизм. Электронные	
	свойства – магнитные, электрические,	
	оптические гальваномагнитные,	
	сверхпроводящие.	

Примечание: если дисциплина устанавливается вузом самостоятельно, то в данной таблице ставится прочерк.

СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ

		Количество часов		
№ п/п	Название темы и ее содержание	лекции	семинарские (лабпракт.) занятия	
1	Общие вопросы.	6		
	Конденсированное состояние			
	вещества. Кристаллическое состояние,			
	жидкости. Фазовый переход.			
	Аморфные тела. Кристаллическая			
	решетка. Трансляционная симметрия.			
	Векторы решетки. Элементарная			
	ячейка. Ячейка Вигнера-Зейтца.			
	Примитивная ячейка. Обратная			
	решетка. Свойства обратной решетки.			
	Зоны Бриллюэна. Кристаллические			
	классы. Сингонии кристаллов.			
	Дифракция рентгеновских лучей. Типы связей в кристаллах (силы Ван-дер-			
	Ваальса, ионные кристаллы,			
	ковалентные кристаллы,			
	металлические кристаллы, водородная			
	связь). Реальные кристаллы. Дефекты			
	кристаллической структуры.			
	Дислокации. Краевая и винтовая			
	дислокации.			

		Кол	ичество часов
№ п/п	Название темы и ее содержание	лекции	семинарские (лабпракт.) занятия
2	Динамика кристаллической решетки.	14	
	Колебания линейной одноатомной		
	цепочки атомов. Колебания линейной		
	двухатомной периодической		
	структуры. Акустическая и оптическая		
	ветви колебаний. Нормальные		
	колебания трехмерного кристалла.		
	Колебания акустического и		
	оптического типов. Циклические		
	граничные условия (условия Борна-		
	Кармана). Набор волновых векторов.		
	Плотность значений волновых		
	векторов. Классическое выражение		
	энергии колебаний кристалла.		
	Квантовая теория колебаний		
	кристалла. Фононы. Статистика		
	фононов и энергия фононного газа.		
	Теплоемкость решетки.		
	Высокотемпературное приближение.		
	Закон Дюлонга и Пти. Теплоемкость		
	решетки. Низкотемпературное		
	приближение. Дебаевская модель		
	колебательного спектра кристаллов.		
	Теплоемкость кристаллов по Дебаю.		
	Теплоемкость, обусловленная		
	низколежащими уровнями атомов.		
	Эффекты ангармонизма. Тепловое		
	расширение твердых тел.		
	Теплопроводность кристаллической		
	решетки. Рассеяние фононов на		
	фононах. Роль высокоэнергетических		
	фононов в теплопроводности.		
	Температурная зависимость		
	коэффициента теплопроводности		
	диэлектриков.		

		Количество часов	
№ п/п	Название темы и ее содержание	лекции	семинарские (лабпракт.) занятия
3	Электроны в электрическом поле	6	
	кристалла.		
	Электроны в периодическом поле		
	кристалла. Функция Блоха и ее		
	свойства. Уравнения для функции		
	Блоха. Электрон в кристаллическом поле. Случай сильной связи.		
	Приближенное вычисление нижних		
	уровней энергии. Электрон в		
	кристаллическом поле. Случай слабой		
	связи. Движение электрона в кристалле		
	под действием внешнего поля.		
	Классификация твердых тел по их		
	электрическим свойствам на основе		
	зонной теории. Проводники.		
	Диэлектрики. Полупроводники.		
	Статистика электронов в кристалле.		
	Функция Ферми и ее свойства. Энергия		
	Ферми. Поверхность Ферми.		
4	Металлическое состояние.	6	
	Энергия Ферми как функция		
	температуры для сильно		
	вырожденного случая. Численная		
	оценка энергии Ферми в простейшем		
	случае (квадратичный закон		
	дисперсии). Энергия электронов в		
	кристалле. Электронная теплоемкость		
	металлов. Электро- и		
	теплопроводность металлов. Закон Видемана-Франца.		
	Магнитосопротивление. Эффект Холла		
	в металлах и полупроводниках.		
	в потаннал и понупроводниках.		

		Количество часов	
№ п/п	Название темы и ее содержание	лекции	семинарские (лабпракт.) занятия
5	Полупроводники и диэлектрики, сегнетоэлектрики. Полупроводники с точки зрения зонной теории твердых тел. Носители заряда в собственном (беспримесном) полупроводнике. Уровни Ферми. Электропроводность полупроводников. Примеси и их влияние на свойства полупроводников. Закон действующих масс. Доноры и акцепторы. Полупроводники п- и ртипа. Контактные явления в полупроводниках. Контакт Шоттки. Омический контакт. Контактные явления в полупроводниках. Р-п	8	
	переход. Вольтамперная характеристика р-п перехода. Ток генерации и ток рекомбинации. Диод на р-п переходе. Воздействие света на полупроводник. Фотопроводимость. Элементарные возбуждения в полупроводнике. Экситоны Ванье-Мотта, экситоны Френкеля, плазмоны. Полупроводниковые фотоприемники. Фоторезисторы, фотодиоды. Биполярный транзистор, полевой транзистор. Полупроводниковые источники света: светодиоды, лазеры. Диэлектрики. Поляризация диэлектриков. Воздействие электромагнитного излучения. Поляроны Фрелиха. Сегнетоэлектрики. Сегнетоэлектрический фазовый переход.		

		Колич	нество часов
№ п/п	Название темы и ее содержание	лекции	семинарские (лабпракт.) занятия
	Обзор состояния учения о магнетизме.	6	
	Классификация твердых тел по их магнитным		
	свойствам. Диамагнетики, парамагнетики,		
	ферромагнетики, антиферромагнетики, слабые		
	ферромагнетики, ферримагнетики.		
	Диамагнетизм. Парамагнетизм. Классическая и		
	квантовая теория. Феноменологическая теория		
	ферромагнетизма. Теория молекулярного поля.		
	Состояние квантовой теории ферромагнетизма.		
	Спиновые волны - магноны. Статистика		
	спиновых волн. Намагниченность		
	ферромагнетика при низких температурах.		
	Антиферромагнетизм в приближении		
	молекулярного поля.		
	Сверхпроводимость.	6	
	Критическая температура. Магнитные свойства.		
	Эффект Мейсснера-Оксенфельда. Критическое		
	поле. Сверхпроводники 2 ^{го} рода. Теплоемкость		
	сверхпроводников. Изотопический эффект.		
	Основы теории Бардина-Купера-Шриффера.		
	Электрон-фононное взаимодействие. Обмен		
	виртуальными фононами. Куперовские пары.		
	Ферми газ и Бозе конденсат. Квантование		
	магнитного потока. Эффекты Джозефсона.		
	Сверхпроводимость неметаллических		
	соединений. Роль d -электронов.		
	Высокотемпературные сверхпроводники.		
	Сверхтекучесть.		
8	Жидкие кристаллы.	2	
	Структура жидких кристаллов. Электрические		
	и оптические свойства жидких кристаллов.		
	Итого часов:	54	

Примечание: программа содержит подробную характеристику содержания темы. Название, количество тем в программе, количество часов на каждую тему определяется согласно Государственному образовательному стандарту по специальности.

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Киттель Ч. Введение в физику твердого тела. М., Наука. 1976.
- 2. Ашкрофт Н., Мермин Н. Физика твердого тела. М., Мир. 1979.
- 3. Давыдов А.С. Теория твердого тела. М., Наука. 1976.
- 4. Павлов П.В., Хохлов А.Ф. Физика твердого тела. Н. Новгород, издат. НГУ. 1993.
- 5. Гуревич А.Г., «Физика твердого тела», Ст. Петербург, Невский диалект, 2004.
- 6. Ансельм А.И. Введение в теорию полупроводников. М., Наука. 1978.
- 7. Барышев Н.С. Свойства и применение узкозонных полупроводников. Казань, УНИПРЕСС. 2000.
- 8. Займан Дж. Принципы теории твердого тела. М., Мир. 1974.
- 9. Де Жен Поль. Физика жидких кристаллов. М., Мир. 1977.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 1. Кнорре Д.Г., Крылов Л.Ф., Музыкантов В.С. Физическая химия. М., Высшая школа. 1990.
- 2. Сонин А.С. Введение в физику жидких кристаллов. М., Наука. 1983.
- 3. Киттель Ч. Квантовая теория твердых тел. М., Наука. 1967.
- 4. Суху Р. Магнитные тонкие пленки. М: Мир. 1967.
- 5. Башкиров Ш.Ш., Либерман А.Б., Синявский В.И. Магнитная микроструктура ферритов. Казань: Изд-во Казанского университета. 1978.

Приложение

к программе дисциплины <u>Физика конденсированного состояния вещества</u>

(Наименование дисциплины)

ПЕРЕЧЕНЬ ТЕМ КОНТРОЛЬНЫХ РЕФЕРАТОВ

- 1. Свойства алмаза (механические, тепловые, оптические)
- 2. Применение нейтронов для изучения кристаллов.
- 3. Полуметаллы. Коррозия металлов. Механизмы коррозии металлов.
- 4. Сверхплотное вещество. Суперионные проводники.
- 5. Пироэлектричество. Способы приготовления магнитных жидкостей.
- 6. Мёссбауэрография.
- 7. Релеевское рассеяние Мёссбауэровского излучения и его применение.
- 8. Мёссбауэровская спектроскопия в геометрии обратного рассеяния.
- 9. Селективная по глубине конверсионная Мёссбауэровская спектроскопия.
- 10. Синхротронное излучение и его применения для исследования вещества.
- 11. Применение синхротронного излучения для Мёссбауэровской спектроскопии.
- 12. Сверхрешётки.
- 13. Сложные ферримагнетики и их исследование методом Мёссбауэровской спектроскопии.
- 14. Типы связей в кристаллах.
- 15. Сверхпроводимость неметаллических соединений.
- 16. Структура и свойства жидких кристаллов.
- 17. Электролюминесценция твёрдых тел.

Приложение

к программе дисциплины Физика конденсированного состояния вещества (Наименование дисциплины)

ВОПРОСЫ К ЭКЗАМЕНУ

Билет №1

- 1. Эффект Холла в металлах и полупроводниках. Постоянная Холла.
- 2. Сверхтекучесть.

Билет №2

- 1. Полупроводники с точки зрения зонной теории твердых тел. Собственная проводимость полупроводника (беспримесный полупроводник).
- 2. Ферромагнетизм в приближении молекулярного поля.

Билет №3

- 1. Электропроводность полупроводников. Подвижность носителей электричества.
- 2. Ферромагнетизм. Спиновые волны магноны.

Билет №4

- 1. Примеси и их влияние на свойства полупроводников. Доноры и акцепторы. Закон действующих масс. Полупроводники n-типа и p-типа.
- 2. Антиферромагнетизм в приближении молекулярного поля.

Билет №5

- 1. Контактные явления в полупроводниках. Контакт Шоттки. Омический контакт.
- 2. Энергия спиновых волн при низких температурах.

Билет №6

- 1. Контактные явления в полупроводниках. Р-п переход. Ток генерации и ток рекомбинации. Вольтамперная характеристика р-п перехода.
- 2. Статистика магнонов. Спиновые волны. Намагниченность ферромагнетика при низких температурах.

- 1. Биполярный транзистор. Полевой транзистор.
- 2. Теплоемкость сверхпроводников. Изотопный эффект.

Билет №8

- 1. Электроны в периодическом электрическом поле кристалла. Общие свойства волновых функций. Граничные условия.
- 2. Взаимодействие электронов через поле виртуальных фононов. Куперовские пары. Основы теории Б.К.Ш.. Ферми-газ. Бозе-конденсат.

Билет №9

- 1. Функции Блоха. Уравнения движения для Блоховских функций. Следствия.
- 2. Квантование магнитного потока. Эффекты Джозефсона.

Билет №10

- 1. Сверхпроводимость неметаллических соединений.
- 2. Распределение значений волнового вектора в обратном пространстве.

Билет №11

- 1. Электроны в периодическом электрическом поле кристалла. Приближение сильной связи. Нижние уровни энергии.
- 2. Кристаллическая решетка. Примитивная элементарная ячейка. Ячейка Вигнера-Зейтца.

Билет №12

- 1. Электроны в электрическом поле кристалла. Приближение слабой связи электронов с остовом.
- 2. Обратная решетка и ее свойства. Зоны Бриллюэна.

Билет №13

- 1. Нормальные колебания одномерной решетки.
- 2. Классификация твердых тел по их электрическим свойствам на основе зонной теории.

- 1. Нормальные колебания одномерной периодической структуры с базисом (двухатомная цепочка). Акустическая и оптическая колебательные ветви.
- 2. Распределение Ферми. Энергия Ферми. Общие свойства функции распределения Ферми.

Билет №15

- 1. Колебания трехмерной периодической структуры с базисом. Граничные условия Борна-Кармана.
- 2. Полупроводники. Электропроводность полупроводников, закон действующих масс.

Билет №16

- 1. Квантовая теория гармонического кристалла. Фононы.
- 2. Температурная зависимость энергии Ферми для сильно вырожденного электронного газа.

Билет №17

- 1. Статистика фононов. Выражение для энергии колебаний кристалла (энергия поля фононов).
- 2. Энергия Ферми для случая простейшего закона дисперсии. Приближение эффективной массы.

Билет №18

- 1. Фононная теплоемкость кристалла при высоких температурах. Закон Дюлонга и Пти.
- 2. Классификация твердых тел по их магнитным свойствам.

Билет №19

- 1. Фононная теплоемкость кристаллов. Низкотемпературное приближение.
- 2. Ларморовский диамагнетизм твердых тел.

Билет №20

- 1. Теплоемкость металлов.
- 2. Дебаевская модель колебательного спектра кристалла. Распределение осцилляторов решетки по частотам.

Билет №21

- 1. Высокотемпературные сверхпроводники.
- 2. Теплоемкость кристалла на основе Дебаевской модели колебательного спектра кристалла.

- 1. Квантовая теория парамагнетизма.
- 2. Теплоемкость, обусловленная примесью атомов с низколежащими уровнями энергии (парамагнитные примеси).

Билет №23

- 1. Магнитное упорядочение. Доменная структура. Стенки Блоха.
- 2. Эффекты ангармонизма. Тепловое расширение твердых тел.

Билет №24

- 1. Электрические и оптические свойства жидких кристаллов.
- 2. Фотопроводимость полупроводников. Экситоны Ванье-Мотта, экситоны Френкеля.

- 1. Сегнетоэлектрики. Особенности сегнетоэлектрического фазового перехода.
- 2. Светодиоды. Полупроводниковый лазер.