КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

"УТВЕРЖДАЮ"	
Проректор	В.С.Бухмин

ПРОГРАММА ДИСЦИПЛИНЫ Радиационная физика в медицине

Цикл ДС

 $\Gamma C Э$ - общие гуманитарные и социально-экономические дисциплины; ЕН - общие математические и естественнонаучные дисциплины; ОПД - общепрофессиональные дисциплины; ДС - дисциплины специализации; ФТД - факультативы.

	0400	_	<u>Физика</u>
(Номер ст	пециальности)		(Название специальности)
Принята на заседании ка	афедры		<u>общей физики</u> (Название кафедры)
(протокол №от ""_	200	9 г.)	(пазвание кафедры)
Заведующий кафедрой	(A.D. A	`	
	(А.В. Аганов))	
Принята на заседании ка	афедры		физики твёрдого тела (Название кафедры)
(протокол № <u>7</u> от " <u>17</u> " <u>с</u> с	ентября 2009	г.)	(пазвание кафедры)
Заведующий кафедрой	<u> </u>	- /	
((Л.Р.Тагиров))	
Утверждена Учебно-мет	одической ко	омиссие	ей <u>физического</u> факультета (Название факультета)
КГУ			(пазвание факультета)
(протокол № от ""_	20	00_ г.)	
Председатель комиссии	· ·		
	Д.А. Таюрск	ий)	

Методические указания (пояснительная записка)

Рабочая программа дисциплины

"Радиационная физика в медицине"

Предназначена для студентов 5 курса,

по специальности: 010400 – Физика

(Номер специальности) (Название специальности)

АВТОР: В.Ю. Петухов

КРАТКАЯ АННОТАЦИЯ:

Лекционный курс включает основы радиационной физики, сведения об источниках ионизирующего излучения, их характеристиках и методах дозиметрии. Подробно рассмотрены вопросы взаимодействия ионизирующих излучений с веществом и его воздействия на живые организмы. Отдельно рассматриваются последствия облучения и защита от ионизирующих излучений. В специальных главах курса излагаются вопросы применения ионизирующего излучения медицинских целей ДЛЯ использования радиационных технологий ДЛЯ получения новых перспективных материалов для медицины.

1. Требования к уровню подготовки студента, завершившего изучение дисциплины Радиационная физика в медицине

(Наименование дисциплины)

Студенты, завершившие изучение данной дисциплины должны:

- обладать знаниями об ионизирующем излучении и основах дозиметрии, об источниках ионизирующего излучения и взаимодействия ионизирующего излучения с веществом.
- понимать механизмы воздействия ионизирующего излучения на биологические объекты;
- обладать знаниями по применению ионизирующего излучения для медицинских целей, включая медицинские приборы, использующие источники ионизирующего излучения;
- знать радиобиологические основы лечебного применения ионизирующих излучений;
- иметь представление о применении радиационных технологий для получения новых перспективных материалов для медицины.

2. Объем дисципли	ны и виды учебн	ой работы (в часах)		
Форма обучения	очная			
очная, заочная, вечерняя				
Количество семестров	<u>1</u>			
очна	я, заочная, вечерняя			

Форма контроля: 9 семестр <u>экзамен</u> зачет, экзамен

№ п/п Виды уч	Dayway yang Sayaya payaggayi	Количество часов		
	Виды учебных занятий	9		
		семестр		
1.	Всего часов по дисциплине	32		
2.	Самостоятельная работа			
3.	Аудиторных занятий	32		
	в том числе: лекций	32		
	семинарских (или лабораторно-			
	практических) занятий			

Содержание дисциплины

ТРЕБОВАНИЯ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО СТАНДАРТА К ОБЯЗАТЕЛЬНОМУ МИНИМУМУ СОДЕРЖАНИЯ ПРОГРАММЫ

Индекс	Наименование дисциплины и ее основные разделы	Всего часов
ДС	-	32

Примечание: если дисциплина устанавливается вузом самостоятельно, то в данной таблице ставится прочерк.

СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ

			Количество часов	
№ π/π	Название темы и ее содержание	лекции	семинарские (лабпракт.) занятия	
1	Введение в радиационную физику.	1		
	Ионизирующее излучение.			
2	Характеристики ионизирующих излучений	1		
	(поглощенная, экспозиционная и эквивалентная			
	доза, мощность дозы, активность			
	радионуклидов).			
3	Источники ионизирующих излучений.	2		
	Естественная и искусственная радиоактивность.			
	Тормозное и характеристическое рентгеновское			
	излучение.			
	Радиоактивность, α - и β - распад, γ - излучение.			
	Бомбардировка корпускулярными частицами.			
4	Детекторы ионизирующего излучения.	2		
	Традиционные и новые методы в дозиметрии.			
5	Общая характеристика взаимодействия быстрых	1		
	частиц и у - квантов с веществом.			

		Коли	чество часов
№ π/π	Название темы и ее содержание	лекции	семинарские (лабпракт.) занятия
6	Эффекты, возникающие при радиационном	1	
	воздействии: вакансионное распухание,		
	распыление, ионно-стимулированная		
	диффузия.		
7	Торможение ионов при имплантации.	2	
	Распределение пробегов. Аморфизация.		
	Основные механизмы аморфизации при		
	ионной бомбардировке.		
8	Радиационное дефектообразование.	2	
	Пространственное распределение		
	радиационных дефектов.		
9	Принцип Гроттгуса. Дискретный характер	2	
	поглощения энергии ионизирующих излучений.		
	Относительная биологическая эффективность		
	разных видов ионизирующих излучений.		
10	Зависимость биологического эффекта от	2	
	поглощенной дозы излучения. Прямое и		
	косвенное действие ионизирующих излучений.		
4.4	Реакция клеток на облучение.		
11	Лучевая болезнь. Последствия облучения.	2	
12	Защита от ионизирующих излучений.	2	
12	Коллоквиум по разделам I–IV курса лекций.	2	
13	Медицинские приборы, использующие	I I	
	источники ионизирующего излучения. Радиобиологические основы лечебного		
	применения ионизирующих излучений.		
14	Использование радионуклидов и нейтронов в	1	
1 '	медицине.	1	
15	Использование рентгеновского излучения в	1	
	медицине.	1	
16	Ускорители заряженных частиц и их применение	1	
	в медицине.		
17	Ионно-лучевой синтез. Основные	2	
	закономерности ионного синтеза.		
18	Получение металлополимерных композитов.	2	

		Количество часов	
№ π/π	Название темы и ее содержание	лекции	семинарские (лабпракт.) занятия
19	Имплантационная металлургия. Модификация	2	
	механических, трибологических, коррозионных		
	свойств металлов и сплавов.		
20	Применение ионной имплантации для создания	2	
	приборов микро- и наноэлектроники.		
	Итого часов:	32	

Примечание: программа содержит подробную характеристику содержания темы. Название, количество тем в программе, количество часов на каждую тему определяется согласно Государственному образовательному стандарту по специальности.

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Кудряшов Ю.Б. Радиационная биофизика (ионизирующие излучения) / Под ред. В.К.Мазурика, М.Ф.Ломанова. М.: ФИЗМАТЛИТ, 2004. 448 с. –ISNB 5-9221-0388-1.
- 2. Ремизов А.Н., Максина А.Г., Потапенко А.Я. Медицинская и биологическая физика: Учеб. Для вузов 4-е изд., перераб. и дополн. М.: Дрофа. 2003.- 560 с. ISNB 5-7107-5001-8.
- 3. Ярмоненко С.П. Радиобиология человека и животных. М.: Высшая школа, 1988. 424 с.
- 4. Коггл Дж. Биологические эффекты радиации / Пер. с англ. М.: Энергоатомиздат, 1986. -184 с.
- 5. Кузин А.М. Роль природного радиоактивного фона и вторичного излучения в явлении жизни. М.: Наука, 2002. 80 с.
- 6. Эйдус Л.Х. Мембранный механизм биологического действия малых доз. Новый взгляд на проблему. М.: ООО «Типография ФНПР», 2001.- 81 с.
- 7. Машкович В.П., Кудрявцева А.В. Защита от ионизирующих излучений. М.: Энергоатомиздат, 1995.
- 8. Риссел Х., Руге И. Ионная имплантация. М.: Наука, 1983.
- 9. Модифицирование и легирование поверхности лазерными, ионными и электронными пучками / Под ред. Дж.Поута.- М.: Машиностроение, 1987.
- 10. Усманов С.М. Радиация: Справочные материалы. М.: Гуманит. Изд. Центр ВЛАДОС, 2001. 176 с.

- 11. Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99), М.: Минздрав России, 2000.
- 12. Кудряшов Ю.Б., Перов Ю.Ф., Рубин А.Б. Радиационная биофизика: радиочастотные и микроволновые электромагнитные излучения / Учебник. М.: Физматлит, 2008. 184 с.
- 13. Смирнов С.Н., Герасимов Д.Н. Радиационная экология. Физтка ионизирующих излучений: Учебник для вузов.- М.: Изд-во МЭИ, 2006.- 325с.

Приложение

к программе дисциплины Радиационная физика в медицине

(Наименование дисциплины)

ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ

Билет № 1

- 1. Ионизирующее излучение. Эффекты при радиационном воздействии на твердые тела.
- 2. Прямое и косвенное действие ионизирующего излучения на биологические объекты.

Билет № 2

- 1. Ионная имплантация. Ядерное и электронное торможение ионов.
- 2. Реакция клеток на облучение.

Билет № 3

- 1. Радиационное дефектообразование.
- 2. Относительная биологическая эффективность различных видов ионизирующих излучений.

Билет № 4

- 1. Характеристики ионизирующих излучений.
- 2. Основные закономерности ионно-лучевого синтеза.

Билет № 5

- 1. Эффекты при ионной имплантации (вакансионное распухание, распыление, ионно-стимулированная диффузия).
- 2. Медицинские приборы, использующие источники ионизирующего излучения.

Билет № 6

- 1. Лучевая болезнь. Последствия облучения.
- 2. Получение металлополимерных композитов.

Билет № 7

- 1. Имплантационная металлургия.
- 2. Лечебное применение ионизирующих излучений.

<u>Билет № 8</u>

- 1. Тормозное и характеристическое рентгеновское излучение.
- 2. Защита от ионизирующих излучений.

Билет № 9

- 1. Радиоактивность, α- и β-распад, γ-излучение.
- 2. Модификация механических, трибологических и коррозионных свойств радиационными методами.

Билет № 10

- 1. Использование радионуклидов и нейтронов в медицине.
- 2. Детекторы ионизирующего излучения.

Билет № 11

- 1. Использование рентгеновского излучения в медицине.
- 2. Применение ионной имплантации для создания приборов микро- и наноэлектроники

<u>Билет № 12</u>

- 1. Применение ускорителей заряженных частиц в медицине.
- 2. Принцип Гроттгуса. Дискретный характер поглощения энергии ионизирующих излучений.

Билет № 13

- 1. Торможение ионов при имплантации. Распределение пробегов.
- 2. Зависимость биологического эффекта от поглощенной дозы излучения.